Search results for "Carbon fixation"

showing 10 items of 17 documents

Mixotrophy in diatoms: Molecular mechanism and industrial potential

2021

Diatoms are microalgae well known for their high variability and high primary productivity, being responsible for about 20% of the annual global carbon fixation. Moreover, they are interesting as potential feedstocks for the production of biofuels and high-value lipids and carotenoids. Diatoms exhibit trophic flexibility and, under certain conditions, they can grow mixotrophically by combing photosynthesis and respiration. So far, only a few species of diatoms have been tested for their mixotrophic metabolism; in some cases, they produced more biomass and with higher lipid content when grown under this condition. Phaeodactylum tricornutum is the most studied diatom species for its mixotroph…

0106 biological sciences0301 basic medicinePhysiologyrespiration.photosynthesisPlant SciencePhotosynthesisSettore BIO/19 - Microbiologia Generale01 natural sciences03 medical and health sciencesBotanydiatomMicroalgaeGeneticsSettore BIO/04 - Fisiologia VegetaleBiomassPhaeodactylum tricornutumPhotosynthesisTrophic levelDiatomsBiomass (ecology)biologyfungiCarbon fixationmicroalgaeCell BiologyGeneral Medicinebiology.organism_classificationmetabolism030104 developmental biologyDiatomBiofuelBiofuelsmixotrophyMixotroph010606 plant biology & botanyPhysiologia Plantarum
researchProduct

Growth and activities of enzymes of primary metabolism in batch cultures of Catharanthus roseus cell suspension under different pCO2 conditions

1988

In vitro enzyme activities of glycolysis, pentose-phosphate pathway and dark CO2 fixation were assayed in batch cultures of heterotrophic Catharanthus roseus cells under various gassing rates and partial pressures of carbon dioxide. Detrimental effects of low pCO2 culture conditions on the growth characteristics could be linked to marked changes in levels of enzymes of primary metabolism during growth. The enzyme levels observed during the early stages of growth were found to be more stable when a constant pCO2 (20 mbar) was maintained and enabled exponential growth to be reached more rapidly. The importance of carbon dioxide as a “conditioning factor” of the culture medium is discussed.

0106 biological sciences[SDV]Life Sciences [q-bio]HeterotrophHorticulture01 natural sciences03 medical and health scienceschemistry.chemical_compoundComputingMilieux_MISCELLANEOUS030304 developmental biologychemistry.chemical_classification0303 health sciencesbiologyCarbon fixationPlant physiologyMetabolismCatharanthus roseusbiology.organism_classification[SDV] Life Sciences [q-bio]EnzymeBiochemistrychemistryCell cultureCULTURE DE CELLULECarbon dioxideGAZ CARBONIQUE010606 plant biology & botany
researchProduct

Novel Autotrophic Organisms Contribute Significantly to the Internal Carbon Cycling Potential of a Boreal Lake

2018

ABSTRACT Oxygen-stratified lakes are typical for the boreal zone and also a major source of greenhouse gas emissions in the region. Due to shallow light penetration, restricting the growth of phototrophic organisms, and large allochthonous organic carbon inputs from the catchment area, the lake metabolism is expected to be dominated by heterotrophic organisms. In this study, we test this assumption and show that the potential for autotrophic carbon fixation and internal carbon cycling is high throughout the water column. Further, we show that during the summer stratification carbon fixation can exceed respiration in a boreal lake even below the euphotic zone. Metagenome-assembled genomes an…

0301 basic medicine030106 microbiologyHeterotrophDNA RibosomaljärvetMicrobiologyCarbon cycle03 medical and health sciencesWater columnTotal inorganic carbonRNA Ribosomal 16SVirologyCluster AnalysisPhotic zoneAnaerobiosis14. Life underwaterAutotrophFinlandPhylogeny030304 developmental biologyTotal organic carbon0303 health sciencesAutotrophic ProcessesmetagenomicsPhototroph030306 microbiologygreenhouse gas emissionsEcologyhiilen kiertoCarbon fixationSequence Analysis DNAiron oxidizers15. Life on landBiotaCarbonQR1-502Food webLakesMikrobiologi13. Climate actionmikro-organismitredox gradientEnvironmental sciencechemoautotrophyResearch ArticlemBio
researchProduct

Energetic coupling between plastids and mitochondria drives CO2 assimilation in diatoms.

2015

International audience; Diatoms are one of the most ecologically successful classes of photosynthetic marine eukaryotes in the contemporary oceans. Over the past 30 million years, they have helped to moderate Earth's climate by absorbing carbon dioxide from the atmosphere, sequestering it via the biological carbon pump and ultimately burying organic carbon in the lithosphere. The proportion of planetary primary production by diatoms in the modern oceans is roughly equivalent to that of terrestrial rainforests. In photosynthesis, the efficient conversion of carbon dioxide into organic matter requires a tight control of the ATP/NADPH ratio which, in other photosynthetic organisms, relies prin…

Aquatic Organismschemistry.chemical_compoundAdenosine TriphosphateSettore BIO/04 - Fisiologia VegetaleCYCLIC ELECTRON FLOWPlastidsPhotosynthesisPHAEODACTYLUM-TRICORNUTUMPlant Proteinschemistry.chemical_classificationMultidisciplinarymicroalgaeRespirationCarbon fixationEnergetic interactionsProton-Motive ForceMitochondriametabolic mutantPhenotypeATP/NADPH ratioOXYGEN PHOTOREDUCTIONCarbon dioxideOxidoreductasesOxidation-ReductionOceanOceans and SeasElectron flowMarine eukaryotesBiologyPhotosynthesisCHLAMYDOMONAS-REINHARDTIICarbon cycleCarbon CycleMitochondrial ProteinsEnergetic exchangesBotanyOrganic matterEcosystem[SDV.BBM]Life Sciences [q-bio]/Biochemistry Molecular Biology14. Life underwaterPlastidEcosystemDiatomsChemiosmosisfungiECSCarbon Dioxidechemistry13. Climate actionNADP
researchProduct

Calvin-Benson Cycle

2015

A carbon dioxide fixation pathway where a molecule of CO2 condenses with a 5-C compound (ribulose 1,5-bisphosphate) to yield two molecules of a 3-C compound (3-phosphoglycerate). These 3-C molecules serve both as precursors for biosynthesis and, through a cyclic series of enzymatic reactions, to regenerate the 5-C molecule necessary for the first carboxylating step (Fig. 1). The pathway is present in several bacterial lineages (e.g., cyanobacteria), and its acquisition by eukaryotic cells (chloroplast in algae and plants) was through the endosymbiotic association with ancient cyanobacteria.

ChloroplastCyanobacteriachemistry.chemical_compoundbiologyAlgaeBiosynthesisBiochemistryChemistryRibuloseCarbon fixationLight-independent reactionsbiology.organism_classificationEnzyme catalysis
researchProduct

Draft genome of a novel methanotrophic Methylobacter sp. from the volcanic soils of Pantelleria Island

2021

AbstractThe genus Methylobacter is considered an important and often dominant group of aerobic methane-oxidizing bacteria in many oxic ecosystems, where members of this genus contribute to the reduction of CH4 emissions. Metagenomic studies of the upper oxic layers of geothermal soils of the Favara Grande, Pantelleria, Italy, revealed the presence of various methane-oxidizing bacteria, and resulted in a near complete metagenome assembled genome (MAG) of an aerobic methanotroph, which was classified as a Methylobacter species. In this study, the Methylobacter sp. B2 MAG was used to investigate its metabolic potential and phylogenetic affiliation. The MAG has a size of 4,086,539 bp, consists …

DNA BacterialMethanotrophMethane monooxygenaseSettore BIO/19 - Microbiologia GeneraleMicrobiologyVolcanic soilSoil03 medical and health scienceschemistry.chemical_compoundRNA Ribosomal 16SBotanyMolecular BiologyEcosystemPhylogenyFormaldehyde dehydrogenase030304 developmental biologyOriginal Paper0303 health sciencesbiologyMethanol dehydrogenase030306 microbiologyChemistryCarbon fixationTetrahydromethanopterinGeneral Medicinebiology.organism_classificationMethanotrophMetabolic potentialMetagenomicsEcological MicrobiologyMethylococcaceaebiology.proteinMethaneBacteriaAntonie van Leeuwenhoek
researchProduct

Iodide-Photocatalyzed Reduction of Carbon Dioxide to Formic Acid with Thiols and Hydrogen Sulfide.

2016

The photolysis of iodide anions promotes the reaction of carbon dioxide with hydrogen sulfide or thiols to quantitatively yield formic acid and sulfur or disulfides. The reaction proceeds in acetonitrile and aqueous solutions, at atmospheric pressure and room temperature by irradiation using a low-pressure mercury lamp. This transition-metal-free photocatalytic process for CO2 capture coupled with H2 S removal may have been relevant as a prebiotic carbon dioxide fixation.

FormatesFormic acidGeneral Chemical EngineeringHydrogen sulfideInorganic chemistryIodidechemistry.chemical_element010402 general chemistryIodine01 natural sciencesCatalysisCatalysisReaccions químiqueschemistry.chemical_compoundEnvironmental ChemistryGeneral Materials ScienceHydrogen SulfideSulfhydryl Compoundschemistry.chemical_classification010405 organic chemistryCarbon fixationCarbon DioxideIodidesPhotochemical ProcessesSulfur0104 chemical sciencesGeneral EnergychemistryCarbon dioxideQuímica orgànicaOxidation-ReductionChemSusChem
researchProduct

CO 2 Fixation and Activation by Cu II Complexes of 5,5″‐Terpyridinophane Macrocycles

2007

An aza-terpyridinophane receptor containing the polyamine 4,7,10,13-tetraazahexadecane-1,16-diamine linked through methylene groups to the 5,5″ positions of a terpyridine unit has been prepared and characterized (L). The acid-base behaviour, CuII speciation and ability to form ternary complexes (CuII-L-carbonate) have been explored by potentiometric titrations in 0.15 M NaClO4 and by UV/Vis and paramagnetic NMR spectroscopy. Comparisons are made with a previously reported terpyridinophane containing the polyamine 4,7,10-triazatridecane-1,13-diamine (L1). For this latter receptor, reductive coupling between indigo and carbon dioxide at indigo-modified electrodes produces carboxylated derivat…

Inorganic Chemistrychemistry.chemical_compoundchemistryPolymer chemistryCarbon fixationPotentiometric titrationInorganic chemistryNuclear magnetic resonance spectroscopyMethyleneTerpyridineTernary operationElectrochemistryPolyamineEuropean Journal of Inorganic Chemistry
researchProduct

MORPHO-FUNCTIONAL PATTERNS OF PHOTOSYNTHESIS IN THE SOUTH PACIFIC KELPLESSONIA NIGRESCENS: EFFECTS OF UV RADIATION ON14C FIXATION AND PRIMARY PHOTOCH…

2007

The morpho-functional patterns of photosynthesis, measured as 14C-fixation and chl fluorescence of PSII, also as affected by different doses of UV radiation in the laboratory were examined in the South Pacific kelp Lessonia nigrescens Bory of the coast of Valdivia, Chile (40°S). The results indicated the existence of longitudinal thallus profiles in physiological performance. In general, blades exhibited higher rates of carbon fixation and pigmentation as compared with stipes and holdfasts. Light-independent 14C fixation (LICF) was high in meristematic zones of the blades (3.5 μmol 14C·g−1 fresh weight [FW]·h−1), representing 2%–16% (percentage ratio) of the photosynthetic 14C fixation (20 …

Lessonia nigrescensCarbon fixationKelpchemistry.chemical_elementPlant ScienceAquatic ScienceBiologyPhotosynthesisbiology.organism_classificationThalluschemistryBotanyCarbonChlorophyll fluorescenceFixation (histology)Journal of Phycology
researchProduct

CO2fixation and activation by metal complexes of small polyazacyclophanes

2001

The interaction of the cyclophanes 2,6,9,13-tetraaza[14]paracyclophane (L1) and 2,6,9,13-tetraaza[14]metacyclophane (L2) and of their Zn2+ and Cu2+ complexes with CO32− and its protonated forms is described. The actuation of the Cu2+–L2 system as an electrocatalyst for the reduction of CO2 to CO in water is advanced. Copyright © 2001 John Wiley & Sons, Ltd.

Metalchemistry.chemical_compoundchemistryvisual_artOrganic ChemistryCarbon fixationCarbon dioxideInorganic chemistryvisual_art.visual_art_mediumProtonationPhysical and Theoretical ChemistryElectrocatalystJournal of Physical Organic Chemistry
researchProduct